Function to plot values from your table in 1, 2 or 3 dimensions using Matplotlib
Parameters: |
|
---|---|
Returns: | the matplotlib.pyplot module |
Examples: simple plotting functions
tab=Table(['a','b','c','d'],'iffi', a=range(5,0,-1),
b=[x/2.0 for x in range(1,6)],
c=[math.cos(x) for x in range(0,5)],
d=range(3,8))
# one dimensional plot of column 'd' vs. index
plt=tab.Plot('d')
plt.show()
# two dimensional plot of 'a' vs. 'c'
plt=tab.Plot('a', y='c', style='o-')
plt.show()
# three dimensional plot of 'a' vs. 'c' with values 'b'
plt=tab.Plot('a', y='c', z='b')
# manually save plot to file
plt.savefig("plot.png")
Create a histogram of the data in col for the range x_range, split into num_bins bins and plot it using Matplotlib.
Parameters: |
|
---|
Examples: simple plotting functions
tab=Table(['a'],'f', a=[math.cos(x*0.01) for x in range(100)])
# one dimensional plot of column 'd' vs. index
plt=tab.plot_histogram('a')
plt.show()
Create a heatplot of the data in col x vs the data in col y using matplotlib
Parameters: |
|
---|
Create a barplot of the data in cols. Every element of a column will be represented as a single bar. If there are several columns, each row will be grouped together.
Parameters: |
|
---|---|
Title : | Title |
Plot an enrichment curve using matplotlib of column score_col classified according to class_col.
For more information about parameters of the enrichment, see compute_enrichment(), and for plotting see Plot().
Warning : | The function depends on matplotlib |
---|
Plot an ROC curve using matplotlib.
For more information about parameters of the ROC, see compute_roc(), and for plotting see Plot().
Warning : | The function depends on matplotlib |
---|